What I Wish I Knew When Learning HoTT
Auke Booij
This document intends to refer to concepts one may not be aware of on
a first reading of the HoTT book, and intends to give a crude,
possibly unhelpful intuition for them.
Thanks for additional input from Sina Hazratapour, Manfred Kerber,
Ulrik Buchholtz and Andrej Bauer.
Changelog
0.1
first release (?)
Biblography
[Bau16] | Andrej Bauer. Five stages of accepting constructive mathematics. Bulletin of the American Mathematical Society, 2016. doi:10.1090/bull/1556. |
[BGL+17] | Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Matthieu Sozeau, and Bas Spitters. The HoTT library: a formalization of homotopy type theory in Coq. In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, 164–172. New York, NY, USA, 2017. ACM. arXiv:1610.04591, doi:10.1145/3018610.3018615. |
[Bis70] | Errett Bishop. Mathematics as a numerical language. In A. Kino, J. Myhill, and R.E. Vesley, editors, Intuitionism and Proof Theory: Proceedings of the Summer Conference at Buffalo N.Y. 1968, volume 60 of Studies in Logic and the Foundations of Mathematics, pages 53–71. Elsevier, 1970. doi:10.1016/S0049-237X(08)70740-7. |
[Hof97] | Martin Hofmann. Syntax and semantics of dependent types. In Semantics and Logics of Computation, 79–130. Cambridge University Press, 1997. |
[NFS12] | Fredrik Nordvall Forsberg and Anton Setzer. A finite axiomatisation of inductive-inductive definitions. In Ulrich Berger, Diener Hannes, Peter Schuster, and Monika Seisenberger, editors, Logic, Construction, Computation, volume 3 of Ontos mathematical logic, pages 259–287. Ontos Verlag, 2012. |
[HotzelEscardo18] | Martín Hötzel Escardó. A self-contained, brief and complete formulation of Voevodsky’s Univalence Axiom. ArXiv e-prints, March 2018. arXiv:1803.02294. |
[LeFanuLumsdaineShulman17] | Peter LeFanu Lumsdaine and Michael Shulman. Semantics of higher inductive types. ArXiv e-prints, May 2017. arXiv:1705.07088. |
[RiehlShulman17] | Emily Riehl and Michael Shulman. A type theory for synthetic ∞-categories. ArXiv e-prints, May 2017. arXiv:1705.07442. |
[Shulman15] | Michael Shulman. Brouwer’s fixed-point theorem in real-cohesive homotopy type theory. ArXiv e-prints, September 2015. arXiv:1509.07584. |